
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the

. research discussed herein.

1

LA-UR-87-2187
LA-UR--87-21I37

DE87 011735

LOS Alamos NMIOI’MI Laboralofv IS opcrmd by Iha UnwcrMV Of COfOrnl# 10F lho Umted States Gspmrmo+m of Energy under contract W-740 S. ENG.36

TITLE uSIN2THE NEWSWRW3JSWSTEMINACRAY RWmUWM’

AuTr+OR(S): R. L. ~illiPS

D. W. Forshmd

SUBMITTED TO: Cray User Grow, proceedings

I)lS(’I.AIMEI:R

for Spring 1987 meting.
/,,

l’his rc~m W:IS prcp;~rcdm mr Iwcoun[d w{~rksponsored hy im ;Igcncy ,If [hc I Ini[ccl SIMcn
(hwcmmcnl, Ncilhcr Ihc I Jnikcl SIU;CS(iovcrnmcm nor uny ugcrwy [hcrcor. nor tmy nf ihcir
employees, nmkcs my w;mrnnty, cnprcm or implic.d, or ussumcsony Icgnl Iiuhil!iy nr rcqxrrmi.
Icilily br ihc mxurncy, wr}plctcncss, l~r uscruincm of any iniormntion, upptrrail,s, prnduc[, or
promn clisclowd, or rcpcscn[s thut i[s UM would not infringe priiulcly uwncd rights, Rurcr.
enw herein In nny specific commcrciul prmlucl. prnccsn,or xcrvicc hy Iradc nnmc, tradcmmrk,
manuhcturcr, or rrlhcrwi.sc (locn nol ncctmcrily cmnrnlituicor imply IIn cndnrscmcrrt, rccxrm.
mcndution, or ruvoring hy the I Inibi .SIaIcS (hwrnmcnt or unv ;mencv Ihcrd The vmwq
urrd opinion! of au!!mrs ‘cnprcmcd herein do not
[Initcd Stalcn (itwcrnmcnt or my ngcrwy thcrcnf.

“..

ncccwrily &IC or rcllccl Ihnsc or Ihc

MASTER
l!=i~~~b~~()~ LosAlamos,Ne.Mexico87545

Los AIamos National Laboratory

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

USING THE NeWS WINDOW SYSTEM IN A CRAY ENVIRONMENT

The cornputin g

characterized as

R. L. Phillips

D. W. Forslund

LOSAlamos National Laboratory

Los Alarnos, NM

INTRODUCTION

environment at Los Alamos National Laboratory (LANL) can be
being widely disrnbuted and massively interconnected. Workstations,

terminals, and mainframes can all communicate with onc another with relative case.
Although Iargc worker machines, such as the eight Crays at LANL, can be accessed
interactive y through conventional command line driven interfaces, often applications arc

best controlled and analyzed via a graph~cal user interface. Workstations, such as those
made by Sun Micyosystcms, Inc. and Apollo Computer Inc., provide the high resolution
displays and mouse-driven graphical input needed for such a user interface, but they lack
the computing power required for many applications at LANL.

What is needed is a distribution of processing, so that the main computational burden is

borne by a Cray while the interaction tasks arc handled by the workstation. NcWS, a
product of Sun Microsystems, is a distributed, extensible window system that provides for

easy allocation of computing tasks throughout a distributed environment. NcWS differs

from other distributed window systems in that the messages sent between processes arc in

the form of PostScript programs. This communication rncchanism promotes a high degree

of extensibility ~mddcvicc indcpendencc,

NcWS is structured as a single UNIX process, a network server that contains a PostScript

interpreter. Client programs, which exist somcwhcrc out on the network, talk to NcWS

through byte streams, This pawr ~escribes the implementation of such a client interface on

a Cray running the UNICOS (~~“~ttting systcm, With only a modest effort, it is possible to
fit a simple PostScript intcrfacc to existing mainfmrne applic~tions, which allows the user

to graphically interact with the program from a remote workstation, Some typical
applications, which htivc been structu.rcd as NcWS clients, wili bc described.

1

NeWS OVERVIEW

The acronym NeWS, derived from Network-extensible Window System, suggests the
network orientation of this window system. As such, it allows the computing resources in

a heterogeneous computing environment to be effectively used. NeWS runs cn a machine
with one or more bitmapped displays. It acts as a window server, managing input and

output on its host machine. Applicaticm programs — called cfients — send messages that
cause NeWS to render images on the display. TIM c!ients may reside anywhere on the

network. Semer-based window systems are often called distributed window systems,
because the sewer and its clients may be distributed over the network. This concept is not

unique to NeWS. It first appeared in Andrews 1a system developed at Carnegie-Mellon,

and X Window.2 from MIT. The following diagram depicts this network orientation,
where the NeWS server, running on a workstation, serves remote clients running on other

machines.
suporcomputor

workstation runntng
client pm-

nawofk II

-fii!iaWIndow dlowlng
●pphoatlon
running on

supwxmputof

} {

window
dlovdng procoms
running In othef
wofkstatlon

worksrntbn funning
window awvor

One of the key features of NcWS is the use of a programming language for communication

between the server and its clients. Lnstead of sending messages consisting of commands

and parameters in a fixed foxmat, clients send programs that the server interprets, ‘T’he

language used by NeWS is PostScript,3 which was origin~lly developed as a language to

drive printers. In order to be suit~blc for use in an interactive, workstation—based

environment, Sun hOs augmented the basic PostScript language with new data types and

operators. Among the most significant of these enhancements are canwzses and evems,
Whereas a printer deals with but one page at a time, NeWS can write to multiple display

1J, Morris CL d,, “Andrew:A DistributedPersonalComputingEnvironment,”Communicationsof lhc
ACM,Vol.29, No. 3 (March 1986),

2 Jtimcs Gcttys,“Pr(~blcms Implcmmtting Window Systems in LJNIX,” USENIX hweding.r, Jimuury
]ou(j,

J AdAc Syslcms, Inc,, /’osLScript f.dnguqe Reference Mmuui, Addi,son.Wesley,1985,

2

surfaces, or canvases. PostScript prwesses (clients) draw on canvases using PostScript

graphics primitives. Canvases are cheap and fast to create and NeWs makes liberal use of
them. Anything drawn on the screen uses a canvas, whether it is a transient menu or a

semi-permanent window where an application’s data are displayed.

Although a PostScript+quipped printer has no need J deal with interactive input from a
keyboard or a mouse, a workstation running NeWS must be able to deal with these

devices. For this, Sun added the event data type to PostScript. Events are PostScript

objects that can be generated either by PostScript processes or by external devices such as
the mouse and keyboard. A process can send an event to itself or any other other process.
Events can be direct-xl to specific processes or canvases by falling in the appropriate field in

the event’s data structure. The following diagram shows a possible scenario for

communication paths between the server and various clients and devices in a network

environment.

Cray

Q

Cuw 1

Apollo

Dil-client2

NeWS server
1

display

1 1

Other erlhancements that NeWS brings to PostScript, such as lightweight processes and

objects for describing color, graphics state, current path (shape), and interprocess

communication, while importan~ are beyond the scope of this paper.4

CLIENT/SERVER COMMUNICATION

The programmer can deal with NeWS at various levels but the most common is one where

a bridge is built between a new or existing C languages application and the PostScript

environment of the server. The programmer does this bv writing a specification file thi~t

4 Sun Microsystems, Inc,, iVeWS Technical Overview, Port No, 800.1498.05, Nhrch, 1987,

S NcWS is not restricted 10programs written in C but that is tie only IN!wwqm Mn(ling currcnt]y

ii~il}liibk.

3

associates C procedure names with PostScript code that is to lx sent to the semer when the

C procedure is invoked by a client. This specification file is compiled by a program called

CPS (for “C to PostScript”) into a C header file, which is included by the C application.
This situation is depicted in the following diagram.

#include g=-

IPS_OPen_POStSCript () ;

ps~ii&Oohy) ;

.

ps_close_PostScript ();

application program (client)

cpa gzaph. cps > graph. h

cdef ps_moveto (x,y) x y moveto
cdef ps_lineto (x,y) x y lineto
.......
..0

interface program (PostScript)

This example suggests that an application will draw lines in a window on the workstation

display by invoking a procedure called ps.-lineto with arguments x and y. Any name

could have been choseil as long M it is unique. Prior to calling that procedure, however,

the application must invoke a standard library routine supplied with NeWS, which opens a

path between the client (application) and the semer, ps-open_PosfScripf. When finished,

the application closes that path by culling ps_close_PostScript.

Next, meaning ;s given to the user-defined procedure by specifying the relationship

between the procedure and comesponding PostScript commands. This step is indicated in

the second part of the dia~a.rn. The directive cde~spccifies that the C procedure name that

follows, when invoked, is to send the ensuing PostScript commands to the NcWS server.

4

Here, ps_lineto(x,y) is equivalent to the PostScript statement x y linero. This is a trivial

exampleb but it does demonstrate the ease with which the C and PostScript worlds can be

bridged. NcWS provides many other tools to facilitate communication between an
application and the server. Some of these will be descritw.d in the section Enhancing an
Application: A Case Study.

PORTING NeWS TO A CRAY

Earlier it was mentioned that NeWS is a network-oriented window system and that clients
and servers can exist anywhere in the network. A situation that is especially useful is one
where a computationally burdensome application (client) is running on a supercomputer

and tie senmr, as is usually the case, is running on a Sun workstation.T In this case the

supercomputer is a C.kayX-MP/24, which is accessible over a network that uses TCP/@
protocols. A segment of the pertinent network topology is shown in the following

diagram.
-Am Nskd (1.AN),Ehunot

.

Cabhlvnot
I

IAN (moflmO I
I I

CC:
uNICOS

~

fw Crav

Clav

6 In faa, mostof he commonPostScriptgraphicsoperations,likenwuetoandlhwo, arepredefine
7Pensof the NcWS saw huve been done for Apollo workstations and for some less powerful gmphics.

Imscd Ftsonal ctnmputcr’s as well.

H This is ~ standard Defense Advmce.d Research Rojccu Agency (DARPA) intemct protocol. The

;~mxtym dcrivtx from Transmission Control Protocot/lintemct Protocol.

5

The boxes labeled 1Prouter are gateways between different physical networks. The Sun

workstations named tan and hope are the names of the machines used by the a~thors.

They are some 2 miles distant from one another and both access the Cray located in the
Central Computational Facility through the gateway labeled principal IP router.

Generally, it is a straightforward matter to port the necessary client software to a new
machine if there is a UNIX environment available. Cray provides UNICOS, which is

based on AT&T System V UNfX. The NeWS client software provided by Sun is 4.2 BSD

based, which results in a few minor incompatibilities with UNICOS. Besides the client
application program, one must port the CPS compiler and a related library. This was

accomplished with little effort once a C compiler that supports symbol names longer than
eight characters was provided. A final porting issue arose because, for performance
reasons, NeWS compresses its PostScript data stream to an encoded form. There were a
few problems encountered in ensuring that these tokens, as they are called, would

propagate unmodilled over the network

Once the port was accomplished, access to the client application of the Cray was gaiued by
opening a tem.inal window on a workstation running the NcWS server and executing a
remote login to the Cray. Once established, one simply invokes the application and it
establishes contact with the server via the ps_open_PosfScriptprocedure described earlier.

All keyboard and mouse interaction required by the application is handled by the
workstation. All output from the client is displayed on the workstation screen.

ENHANCING AN APPLICATION: A CASE STUDY

NeWS is basically a window server rather than a complete window system. This means

that NeWS does not presume a window or menu management strategy or enforce a
particular style of user interface. To demonstrate the capabilities of NeWS, however, Sun
provides a set of files that implement a sample user interface, a window system, and a

menu package. For ease of use, and to minimize the programmer’s requisite knowledge of

PostScript, these utilities have been provided in the style uf Sma:ltalk-like objects.g

Generally, a programmer will ftnd it convenient to usc these tools when adapting a client

application to the NeWS environment. This is disarmingly easy to du, as is shown in the
fo!lowing program fragments,

9 Owen M, Dcnsmore, “Object Oriented Progmmm ing in NeWS ,“ Third Mon/erey Graphics Workshp,

LJSENIX, Novcn?bcr, 1986,

t)

/win framebuffer /new DefaultWindow send def

{
/FrameLabel (Hello!) def
/PaintClient {paintme} def
/IconLabel (TEST) def
/ClientMenu MyMenu def

} win send
100 100 200 300 /reshape win send
/map win send

This isanexampleofhowonecreatcs an instance ofawindowobject. DejiauftWindowis

the name of the master window class, i.e., the sample window manager supplied with

NeWS. “f’ heidentifierhvin is arbitrarily chosen and will contain the definition ofa
window whose parent is~rameb~er, the pnmarydisplay, andis created by the window

class method called /new. Then fou.r procedures are installed in win which label the
frame (Framefdd), produce OUQUt fkm the client in the window (PaintC/ient), and

identify the window in the closed, iconic state (Icon&6ef). The next line spetilcs that a

specific menu is to be installed for this window, MyMenu, which is defined below.
Finally, the window is sized to appear with its lower left comer at 100,100 units, with a

width of 200 and a height of 300 units. The window is made visible by sending the object
the hap methcd

Menu creation is equa!ly straightforward. The following is a typical command for

producing a menu of three items.

/MyMenu
[

(Key 1) {menuprocl }
(Key 2) {menuproc2 }
(Other +) OtherMenu

1 /new DefaultMenu send def

This statement creates an instance of the master menu class QefauhMenu called MyMenu.
When an item named Key / is selected it causes a procedure named menuprocl tobe
invoked. Likewise for the second item. The third item, Other =>, causes a pull-right or
walking menu to appear, OtherMenu, which has a similar set of keys and comsponding

action procedures. MyMenu appears when a specified mouse button is pressed when the
cursor is within the windowtowhich it t :longs — win in this case.

7

The fwst sample application to be considered is GNUPLOT, a public domain program

developed at Villanova University. 10 GNUPLOT is a sophisticated interactive data
plotting program comprising several thousand lines of C source code. About 30 lines of
code were added to provide the client/senmr bridge described earlier. Four C-callable
procedures were defined in terms of about 400 lines of PostScript. Once processed with
CPS, the resulting header file is included and compiled with the slightly modified
GNUPLOT application. The default master window and menu classes were used without
modification. The behavior of GNUPLOT as modified to run under NeWS can best be
described by reference to a sequence of screen dumps, Plates 1-4.

Plate 1 shows three VTIOO terminal emulator windows. GNUPLOT has been invoked in

the upper left window and commands to the program will be issued there. A collection of
typical GNUPLOT commands is shown in the lower right window. Finally, a portion of

the PostScript interface program is shown in the lower left window. In particular, the
complete routine for drawing in a window, PaintClient, is shown there. In the upper left
window a command has been issued to GNUPLOT to plot the sine function. The small
window to the right was opened and the data were scaled and plotted there. It is important

to note that the client application (which, recall, resides on a Cray) need only be consulted

when a new data set is requested. Othemvisc, all operations are performed locally cm the

workstation that hosts the NeWS server. The menu 11 appearing at the bottom of dw

plotting window shows that five operations can now be performed. These am all handled

by the PostScript interface; GNUPLOT knows nothing of these capabilities.

The New Window capability is demonstrated in Plate 2. There, three additional

windows have been interactively opened by the user, Several commands were issued to

GNUPLOT, resulting in the new data sets being plotted in the additional windows. The

Active Window menu item allows the user to steer a new data set to the desired
window, thereby to draw afresh in empty ones or to replace data sets in those windows

cumently in use.

Plate 3 demonstrates the Zoom menu item. By invoking it the user has zoomed-in tothe
upper left corner of the original sine cmwe data set (in the window labeled GNUPLOTO),
which reveals the label that was previously illegible, A new menu item, Restore, has also

appeared, which allows restoration of the original scale. After zooming, the user invoked
the Print menu item, which produced a file containing the PostScript representation of the

cment window contents ready for printing. The window to the left, labeled psview,
demonstrates the application of a NcWS PostScript previewing facility to that fde.

10GNUPLOTwasdeveloped by Thomas Williams and Colin Kelley, Department of Electrical

Engineering, ViUanovaUniversity,Villanova,PA 19085.

11Clkw%fenu, to use previous terminology.

8

Finally,Plate 4showsanapplicationoftheOverlay menu item. This is designed to allow

comparison of different data sets. The tangent function originally plotted in the
GNUPLOT1 window was overlaid on the sine function in GNUPLOTO. The same

operation was performed in GNUPLOT2 and the user zoomed-in on the origin of the
composite data set. When the Print menu item is invoked for an overlaid window, the
composite, possibly Zoomed, data set will be primed.

OTHER CLIENT APPLICATIONS

Two other existing applications have been converted to NeWS clients, using the same

clientherver interface techniques descxibed earlier. As was the case with GNUPLOT, only

minimal changes had to be added to the applications to provide access to NeWS

capabilities. The fmt of these applications is SURFMODL,12 a public douxtin surface
rtiocielingp~kage. Plate 5 shows some images produced by that package. Consistent with
the complexity of the application, its menu is more extensive than that for GNUPLOT.
Note, however, that the first menu Window Edit is, ‘when invoked, the entire

GNUPLOT menu, unchanged. Thus, it was possible to reuse all the functionality that
was developed for another appiicaaon. Plate 6 is a good example of the use of the Print
menu command. It depicts a shaded rendition of the image shown in the SURFIUODW
window.

Plate 7 shows shows an application where, again, the menu functions developed for

GNUPLOT were used virtually unchanged. This application is a standard UNIX plot file
filter. Plot ffles conforming to this format can be preview~ independent of the application

that produced them. In this example a file containing four plots is being previewed. The

data plotted in the window labeled NeWSpfo?l were extracted from the original window

with the Zoom command. The ability to leverage off previous Ne’AK developments

should be obviou~.

CONCLUDING REMARKS

NeWS has proven to be a flexible and powerful environment for building sophisticated

user interfaces for major applications. Particularly impressive is the ease with which

existing applications can be fitted with an interactive interface, even though issues like

window systems and graphical input were never envisioned in their design. This is

especially important in an organization where many substantial applications already exist

and it is net feasible to change them radically in order to accommodate a workstation

12SUR.FMODL was developed by Kennefh Van Camp, P. O. Box 784, Sfroudsburg, PA 18360.

9

environment:. The authors have just begun to explore the potential of NeWS. As
impressive as the results have been so far, it seems the suxface has hardly ken scratched.

10

I
‘ am P*

OMU? LOT
!mlx V9rmm 1 1.0
last modiriad Tim rat 19 20M. 31 Irrl 19#T

I cOpyTl#lc (c)

k9L0t>plot Un(x)

Wkvulud, mlb?

~udiet aqln

●mns cum. qtc Wliw ●ob dot
VAw /*irmt qst
(

(
~aintCLAmt

(t LIOntCmvta ootimvu
Deltrfty OaLctrMorors

pio paws
ovorLsyt
(mar pop ●* wttr got

I def
r?unt:aon t

qtmw
IConcmvto Dccomvm

:OOC#i~OLOK fillcmvm !aoMoKdt?CO&? strokccwivw
8cwray

Ouotruurom pie pwto

qrcotorc
) lot

I U Ou Omd

tmlw /~urmt fuss p4t

Gt’om?r-

Iv NmWhdtw

htdw Ww9w

J

Ot o*L9@ :00

w I-3 II Win(x), Wos(n)
!St [.30 801 b@8jO(x!00 1:01 vitb lXPUOW, Or**rNcIOfx)).2 S vim potnco
W CMPLSS400

pbt [-10101 rou(oin(x) *ObotjO(x))

p&t I+piI*11I.sSI rou(?-(x) Iccm(x)) I lm
an tvto, out

btt @M@to 800

pLot (-10 *OI tin(~:o) ‘oemfx)

Lot1-1$Ml ‘1 dst’ritt! 1wAL800 , ‘: d-t’ , ‘Y dst’ WIJI Linoo

—a

P!ate1

i

I

I
@**

OIIU? LO?
wdx wrsim 1,1 0
he mooiriod m.. t*b 19 20:24 31 R2T 1907
cOpyci@c (c)“.’:4.1907 Colsl K*&y, nw840 W12MM0

LIJt>pbc Un(x)
be> Pbt tmf7s
Lot>we $*! *P 30

&t I-10 .LOI tJ,(~), ●tin(x), 009(atM(x))@u@0C>
upLOe> plot [-3 J:*OI bosjO!x) *O. 12*1 rim iapussm, (W%sjo(x))-z s Vita poi

tc
LOe> <~t c,+Lo. zoo

lot [-s *I a.em(x). emoo(x)~bt)
qkc} \lut [-30 201 boajO(X) *O. 12cl witJI ~oo, (x. *boajO(x)) -2. S with pOl

u
Iql;e.> #

gnuaictDqln
myWU OU* q@t /t&LDw cmh d,t

ww /@ret qae

I
(

i?alntouomc
(cLimwMvu Ootcmva.

wlur~ ca.Lettu*rorm

pie palno
ovorltyt
(oXOh pm ,~o moh WC

} det

/?untIom (

Q9W0
IconCmToo soteanvw

2coM1UCOAO; flUauw90 cc
*e Larray

calotcardom PM PUOO

graowco
) der

1 thimWnd

r
thlw/@lr9trumpug

.m5T3—

Gwnm —

.

t —-—

Plate 2

sin(x)

Id*c ”””
~ww:eon (

Q9W0

IconCmvac bQumvo4

leor#iLLcoLor rluouwxo

ochrrty

eQLoormororx pio pwo
grootoro

I dot

1 thiw O*

UIIDW /@irst tuo*PU9

.

-lsin(x)

d
NawWMew

Advt Window
ovel~

Ra%

I 4s4
.— .)

!

I
I 1

I
ml.ao m 1

.i-91 wn(x), cooo (x) I
*loo 400

I

*/co Wwm

4

I
I

P[;lte4

I
caiwlath lMI doc
Oblut MO 4or
CMtsopu 1 Ooc
s Wca 2,s web Wwlaw
w8muyDwinAlsGolo

*wianoh W M
qwxnalt 12. s oar
it

k’”:@oMing to j@o
w Owlet Job riLoo T’61!A1..—

~1
Ctmo I I

c fm

tnofotain~ to 2-D
Ottlnq $tJrcm*o

~, TOym, S-, w!

tmororunq to U.o

tot w rib m

Msfomlnq to I-D
tor nw flla nma

mttormt+ to I-D

ott~ tuttoroo.
* ~rop *r po at

4

/tl

aLo*po

1 po
Omplpo

MQ turt tm

Oncforfilnq to t-o
Ofttrq Ourraooo,

Xoyo, Yoyol :Oyo,
Moromlns to I“D

Ii
mot twf filo n=o~

motorunf to I.B,

=-d

oL

I

I qdt
.– -1,

1
tol I +btwpwm

1
Ml

t (mlq
Mu

Dau
pi p,)
t II
L,tp :0

M,:

Oont

pi Po)

7

Q,

I ./BtJVpstm

t 1

I
. —.

P!ute 6

r9viod@mtp8p*r
-Oldwltarob poptie

tU9fi14 owrmttUo dot
dale

(*109W OMWMM 7 odd Q mlv etrlng tic
avidlnah mea @tatmh lnob mala
(i. O omb ti) sottrmcfor
cbitWMUablt8tobitSoPU[oblWidU O 0 cBltJlt rwq O cBIUtl

l!’it

U3“#t. po” MC
b lpr pip

QI

H
motorurrq
ttr Mw ri
motorwrq
WC MO tii

Onoromlnq

Orurq WC

t ~op Apt

II
@b*p*

ipo
tmpipo
b mxt fm

m@ fWUnQ
Ortmq curt
W, rep, c

mofsminq

Wr w rlL

motofwq
Q ad ./Ryp

0.1 I 1 I I
1 “’’1’:

O.mE- Uppw M
3

6
1 1 I I 1111111

0 0!I OJ

4

(
[
[

I i

I)

[

(
I
I

t~
II

.- —-.. ,—— ..- --.— —--- ,--

q
-Q 9

L

.

Plate 7

